This commit is contained in:
2025-07-02 00:07:49 -07:00
commit c208c6b35d
114 changed files with 71862 additions and 0 deletions

View File

@ -0,0 +1,22 @@
a = 3.0 <= 3.1
b = 22 + 11.0
c = 11 + int(13)
d = 4 != 4
e = (3 <= 5) or (5<=4)
f = (3 <= 5) and (5 <= 4)
print(a)
print(b)
print(c)
print(d)
print(e)
print(f)
c = {'building number': '7725',
'street name': '188th Ave NE',
'city': 'Redmond',
'state': 'Washington',
'zip code' : 98052}
print('redmond costco is located at:')
print(c['building number'], c['street name'], c['city'],',', c['state'],',', c['zip code'])

View File

@ -0,0 +1,33 @@
1. input:
keyboard, mouse, other HID's, cameras, joysticks, game controllers
output:
any kind of display, headphones, speakers, vibration motors, a teletype terminal
2. outputs of operations as stated:
True
33.0
24
False
True
False
operations of opposite result for a,d,e,f:
3.0 == 3.1
4 == 4
(6 <= 5) or (5 <= 4)
(3 <= 5) and (3 <= 4)
3. address dict
redmond costco (no i dont live in redmond)
c = {'building number': '7725',
'street name': '188th Ave NE',
'city': 'Redmond',
'state': 'Washington',
'zip code' : 98052}
print('redmond costco is located at:')
print(c['building number'], c['street name'], c['city'],',', c['state'],',', c['zip code'])
# the above code outputs this:
redmond costco is located at:
7725 188th Ave NE Redmond , Washington , 98052

View File

@ -0,0 +1,13 @@
import numpy
rainfall = [0.0, 0.1, 0.6, 0.7, 0.4, 0.3]
for n in range(len(rainfall)):
x = rainfall[n]*25.4
if x < 0:
raise ValueError(
'make sure no one is drinking out of the rainfall meter')
elif x >= 10:
print(x)
z = numpy.max(rainfall)
print(z*25.4)

View File

@ -0,0 +1,344 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Ansi 0 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.0</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.0</real>
<key>Red Component</key>
<real>0.0</real>
</dict>
<key>Ansi 1 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.0</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.0</real>
<key>Red Component</key>
<real>0.66666668653488159</real>
</dict>
<key>Ansi 10 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.3333333432674408</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>1</real>
<key>Red Component</key>
<real>0.3333333432674408</real>
</dict>
<key>Ansi 11 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.3333333432674408</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>1</real>
<key>Red Component</key>
<real>1</real>
</dict>
<key>Ansi 12 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>1</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.3333333432674408</real>
<key>Red Component</key>
<real>0.3333333432674408</real>
</dict>
<key>Ansi 13 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>1</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.3333333432674408</real>
<key>Red Component</key>
<real>1</real>
</dict>
<key>Ansi 14 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>1</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>1</real>
<key>Red Component</key>
<real>0.3333333432674408</real>
</dict>
<key>Ansi 15 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>1</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>1</real>
<key>Red Component</key>
<real>0.99999600648880005</real>
</dict>
<key>Ansi 2 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.0</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.66666668653488159</real>
<key>Red Component</key>
<real>0.0</real>
</dict>
<key>Ansi 3 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.0</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.3333333432674408</real>
<key>Red Component</key>
<real>0.66666668653488159</real>
</dict>
<key>Ansi 4 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.66666668653488159</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.0</real>
<key>Red Component</key>
<real>0.0</real>
</dict>
<key>Ansi 5 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.66666668653488159</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.0</real>
<key>Red Component</key>
<real>0.66666668653488159</real>
</dict>
<key>Ansi 6 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.66666668653488159</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.66666668653488159</real>
<key>Red Component</key>
<real>0.0</real>
</dict>
<key>Ansi 7 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.66666668653488159</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.66666668653488159</real>
<key>Red Component</key>
<real>0.66666668653488159</real>
</dict>
<key>Ansi 8 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.3333333432674408</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.3333333432674408</real>
<key>Red Component</key>
<real>0.3333333432674408</real>
</dict>
<key>Ansi 9 Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.3333333432674408</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.3333333432674408</real>
<key>Red Component</key>
<real>1</real>
</dict>
<key>Background Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.0</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.0</real>
<key>Red Component</key>
<real>0.0</real>
</dict>
<key>Badge Color</key>
<dict>
<key>Alpha Component</key>
<real>0.5</real>
<key>Blue Component</key>
<real>0.0</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.1491314172744751</real>
<key>Red Component</key>
<real>1</real>
</dict>
<key>Bold Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>1</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>1</real>
<key>Red Component</key>
<real>0.99999600648880005</real>
</dict>
<key>Cursor Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.72337132692337036</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.72338062524795532</real>
<key>Red Component</key>
<real>0.72336345911026001</real>
</dict>
<key>Cursor Guide Color</key>
<dict>
<key>Alpha Component</key>
<real>0.25</real>
<key>Blue Component</key>
<real>1</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.9268307089805603</real>
<key>Red Component</key>
<real>0.70213186740875244</real>
</dict>
<key>Cursor Text Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>1</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>1</real>
<key>Red Component</key>
<real>0.99999600648880005</real>
</dict>
<key>Foreground Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.66666668653488159</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.66666668653488159</real>
<key>Red Component</key>
<real>0.66666668653488159</real>
</dict>
<key>Link Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>1</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.3333333432674408</real>
<key>Red Component</key>
<real>0.3333333432674408</real>
</dict>
<key>Selected Text Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>0.0</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.0</real>
<key>Red Component</key>
<real>0.0</real>
</dict>
<key>Selection Color</key>
<dict>
<key>Alpha Component</key>
<real>1</real>
<key>Blue Component</key>
<real>1</real>
<key>Color Space</key>
<string>sRGB</string>
<key>Green Component</key>
<real>0.86970102787017822</real>
<key>Red Component</key>
<real>0.75813239812850952</real>
</dict>
</dict>
</plist>

View File

@ -0,0 +1,54 @@
import numpy as np
import scipy.stats as s
import glob as glob # glob
import pandas as pd
filelist = glob.glob("hw3_*.txt")
filelist.sort()
def read(file):
fileobj = open(file, "r")
outputstr = fileobj.readlines()
fileobj.close()
outputarray = np.zeros(len(outputstr))
for i in np.arange(len(outputstr)):
outputarray[i] = float(outputstr[i])
return outputarray
parameters = ["mean", "median", "std", "iqr", "skew", "kurtosis"]
for i in range(len(filelist)):
print(filelist[i])
data = np.array(read(filelist[i]))
for n in range (len(parameters)):
operation = parameters[n]
print(str(operation) + " " + np.operation(data))
#for n in range(len(filelist)):
# print(filelist[n])
# mean = np.mean(read(filelist[n]))
# print("mean: " + str(mean))
# median = np.median(read(filelist[n]))
# print("median: " + str(median))
# stddev = np.std(read(filelist[n]))
# print("stddev: " + str(stddev))
# iqr = s.iqr(read(filelist[n]))
# print("iqr: " + str(iqr))
# skew = s.skew(read(filelist[n]))
# print("skew: " + str(skew))
# kurtosis = s.kurtosis(read(filelist[n]))
# print("kurtosis: " + str(kurtosis)+"\n")
# the mean and median are similar for all files, indicating solid, outlier free data.
# standard deviation is quite high for everything except wind shear, indicating either \
# inconsistent readings for everything but wind shear, or more likely, smaller units and \
# higher rates of change.
# the difference between shr1's iqr and stddev is larger than that of shr2's (shr2's is \
# quite close to its stddev), possibility of one minor outlier
# none of the data is very skewed, the largest (absolute value) being 0.54896, and \
# all of the data has negative kurtosis, meaning when distibuted, it will have a shallower \
# peak than the bell curve (e^x^2)
# the february and may datasets are similar in that their wind shears are similar, though \
# mays is still larger. they are different in that mays SRH and CAPE are both much higher, \
# so mays tornadoes are much stronger.

View File

@ -0,0 +1,17 @@
import numpy as np
import scipy.stats as s
import glob as glob
calc = {"mean":np.std, "median":np.median, "std":np.std, "iqr":s.iqr,\
"skew":s.skew, "kurtosis":s.kurtosis}
print(calc["kurtosis"])
def read(file):
fileobj = open(file, "r")
outputstr = fileobj.readlines()
fileobj.close()
outputarray = np.zeros(len(outputstr))
for i in np.arange(len(outputstr)):
outputarray[i] = float(outputstr[i])
return outputarray

View File

@ -0,0 +1,9 @@
2.5
140.01
127.19
116.8
211.31
115.35
220.38
250.54
248.61

View File

@ -0,0 +1,10 @@
383.79
364.37
364.37
517.94
517.94
630.18
240.08
203.42
184.33
211.19

View File

@ -0,0 +1,9 @@
67.4134
63.5197
61.7
55.6912
56.6491
48.4201
46.6137
41.388
43.7989

View File

@ -0,0 +1,10 @@
62.3392
60.4778
60.4778
68.9632
68.9632
72.1033
63.5346
63.4428
63.272
52.7143

View File

@ -0,0 +1,9 @@
205.47
656.44
691.44
446.69
448.34
1069.41
808.91
983
307.58

View File

@ -0,0 +1,10 @@
3167.88
2844.88
2844.88
2146.88
2146.88
1820.75
741.62
1042.75
810.12
1314.88